


HLR: Generating Adversarial Examples by High-Level Representations

Yuying Hao¹, Tuanhui Li², Li Li², Yong Jiang²*, and Xuanye Cheng³
¹Tsinghua-Berkely Shenzhen Institute, Tsinghua University, Shenzhen, China
²Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
³SenseTime Research, SenseTime, Shenzhen, China
Contact Author: (haoyy17@mails.tsinghua.edu.cn)

Model structure

The overall model structure of the HLR attack method. X_i is the benign image, X_i' is generated image and T_i is reference image. GD module produces losses L_1 and L_g , perceptual module generates loss L_p . Classifier C is the state-of-the-art classifier.

The proposed HLR attack

> Loss for GD Module

$$\mathcal{L}_{1} = ||\mathbf{X}_{i}' - \mathbf{X}_{i}||_{1}$$

$$\mathcal{L}_{g} = E_{G(\mathbf{X}_{i}) \sim p_{G(\mathbf{X})}}[D(G(\mathbf{X}_{i}))] - E_{\mathbf{X}_{i} \sim p_{\mathbf{X}}}[D(\mathbf{X}_{i})]$$

$$= E_{\mathbf{X}_{i}' \sim p_{\mathbf{X}'}}[D(\mathbf{X}_{i}')] - E_{\mathbf{X}_{i} \sim p_{\mathbf{X}}}[D(\mathbf{X}_{i})]$$

$$= E_{\mathbf{X}_{i}' \sim p_{\mathbf{X}'}}[D(\mathbf{X}_{i}')]$$

We denote the generator framework as G, the distribution of the images produced by generator as $p_{G(X)}$ and discriminator framework as D, discriminator output as $D(\cdot)$

> Loss for Perceptual Module

$$\mathcal{L}_p^l = \frac{1}{N^l W^l H^l} ||\psi(\mathbf{R}^l) - \psi(\mathbf{R}^{l'})||^2$$

$$\mathcal{L}_p = \frac{1}{m} \sum_{l=1}^m \mathcal{L}_p^l$$

where \mathbf{R}^l is the input response of a single reference image \mathbf{T}_i in layer l and $\mathbf{R}^{l'}$ is the input response of a single generated image \mathbf{X}_i' .

> Loss for Classifier C

$$\mathcal{L}_{KL}(p||q) = \sum_{i} p(C(\mathbf{T}_i)) log \frac{p(C(\mathbf{T}_i))}{q(C(\mathbf{X}'_i))}$$

where $C(\cdot)$ denotes the output of classifier C, $p(C(T_i))$ is the distribution of $C(T_i)$, $q(C(X_i'))$ is the distribution of $C(X_i')$.

Experiments

> Comparison to SOTA on CIFAR-10

fooling rate	es d-model		Modela	Model3
g-model		Modell	Model2	Modela
VGG-16	NOISE	7.12	7.75	5.76
	PGD [14]	21.19	23.50	19.17
	CW-L2 [3]	32.56	37.20	32.82
	FGSM[4]	24.29	26.24	23.55
	VIRTUAL [16]	30.97	32.27	28.46
	Ours	43.62	40.78	55.74
VGG-19	NOISE	1.97	3.49	0.75
	PGD [14]	8.26	13.24	6.90
	CW-L2 [3]	21.95	29.43	21.88
	FGSM[4]	24.07	27.44	23.85
	VIRTUAL [16]	28.95	35.14	28.26
	Ours	43.33	37.35	29.09
ResNet-18	NOISE	6.62	6.84	5.98
	PGD [14]	12.68	29.85	11.88
	CW-L2 [3]	30.26	34.90	14.46
	FGSM[4]	18.83	20.22	17.6
	VIRTUAL [16]	27.48	31.06	25.51
	Ours	38.01	33.87	30.85

> Comparison to SOTA on ImageNet

fooling rat	es d-model		Mag 10	D M 150
g-model		VGG-16	VGG-19	ResNet-152
VGG-16	UAP [17]	78.30	73.10	63.40
	FFF [19]	47.10	41.98	$-^1$
	OPT [13]	100.00	_	78.00
	FGA [13]	99.00	-	
	SA [7]	52.00	60.00	1-1
	NAG [22]	73.25	77.50	54.38
	Ours	100.00	66.05	67.8
VGG-19	UAP [17]	73.50	77.80	58.00
	FFF [19]	38.20	_	43.62
	OPT [13]		_	_
	FGA [13]	_	_	S
	SA [7]	48.00	60.00	_
	NAG [22]	80.56	83.78	65.43
	Ours	83.30	100.00	82.20
ResNet-152	UAP [17]	47.00	45.50	84.00
	FFF [19]		_	-
	OPT [13]	81.00	-	100.00
	FGA [13]	80.00	-	96.00
	SA [7]	_	-	_
	NAG [22]	52.17	53.18	87.24
	Ours	84.00	80.80	100.00

Contribution

- (1) We propose a novel network structure to generate adversarial examples.
- (2) We introduce a perceptual loss to evaluate the highlevel representations differences between benign images and the adversarial examples.