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Abstract:
Intrusion detection system Is designed to detect threats and attacks, which are especially important in
nowadays’ constantly emerging information security incidents. There has been a lot of work devoted to
realizing anomaly detection mode of intrusion detection via deep learning since deep learning becomes a
research hot spot. However, there Is rare work that uses different deep learning networks as hybrid
architecture to benefit the advantages of each special part. In this paper, we are inspired by Google’'s Wide &
Deep model which Is proposed to combine memorization with generalization via different networks. We
propose a framework to use Wide & Deep model for intrusion detection. To get comprehensive categorical
representations of continuous features, we use a density-based clustering (DBSCAN) to convert the KDD'99
\NSL KDD format features into sparse categorical feature representations. A widely used and popular NSL

~ KDD dataset Is used to evaluate the model. A comprehensive empirical evaluation with hypothesis testing
demonstrates that the revised Wide & Deep framework outperforms the separated part alone. Compared with
other machine learning base line methods and advanced deep learning methods, the proposed model
outperforms the baseline results and achieves a steady and promising performance In tests with different

levels.
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Overview of Deep & Shallow model for intrusion detection
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Binary classification metrics of different models
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Accuracy|Precision|Recall |F1 score
Wide model on Test™ 76.12% |80.42% |75.09%|77.66%
Deep model on Test™ 77.68% |81.47% (60.31% [69.31%
Wide & Deep model on Test™|82.79% [92.16% |74.43% |82.34%
Wide model on Test 2! 66.74% |67.13% [86.74%|75.69%
Deep model on Test ™! 67.23% |67.77% |75.56% |71.45%
Wide & Deep on Test 2! 69.17% (69.32% |85.34% [76.50%
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Clustering Algorithm:
 DBSCAN (NSL KDD dataset)

* float rate features (€=0.01, MinPts =50 )
* |nteger features (e=1, MinPts =50)
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Joint training : P(Y = 1|x) = c(Wy,igelx, ()] + Wieepa'’ + b)

Accuracy comparison of different models

Model KDD Testt|KDD Test =%
7483 [20] 81.05% | 63.97%
Naive Bayes [20)] 76.56% 55.77%
NB Tree [20] 82.02% 66.16%
Random Forest [20] 80.67% 63.26%
Random Tree [20] 81.59% 58.51%
Muti-layer Perceptron [20]| 77.41% 57.34%
SVM [20 69.52% |  42.29%
RNN [23 83.28% | 68.55%
Semantic LSTM [10] 82.21% 66.10%
CNN (ResNet50) [11] 79.14% | 81.57%
CNN (GoogLeNet) [11] 77.04% 81.84%
Wide & Deep 82.79% 69.17%
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