Sparse Recurrent Mixture Density Networks for Forecasting High Variability Time Series with Confidence Estimates

Introduction

- Proposed two variants of sparse Recurrent Mixture Density Networks (sparse RMDN) for forecasting, namely, **sparse LSTM-MDN** and sparse ED-MDN.
- Contains a feedforward layer which produces a sparse and low-dimensional representation of the high-dimensional input data.
- The sparsity is achieved by imposing LASSO [1] penalty on the weights of the feedforward layer.
- Each unit in the feedforward layer has access to only a subset of the input features [2], which results in unsupervised feature selection.
- The output of the feedforward layer is fed to the subsequent RNN (LSTM [3] or ED [4]) to capture temporal patterns.
- The output of the RNN is passed through Mixture Density Network (MDN) [5] to handle the variability in the data and to estimate the confidence of the forecast.

Sparse LSTM-MDN

- $\mathbf{x} = (x_1, \cdots, x_t)$ denotes an input sequence of length t. Each $x_k \in \mathbb{R}^d, k \in \{1, \cdots, t\}$; d=input dimension.
- The model is required to provide a prediction $\mathbf{y}_{t+1,...,t+p}$ of $\mathbf{y}_{t+1,...,t+p}$ given the input $\mathbf{x}_{1,...,t}$.

Figure: Proposed sparse LSTM-MDN for 1-step ahead forecasting with two LSTM layers and K Gaussians.

- The output of the feedforward layer for input \mathbf{x}_t^i is given by $\hat{\mathbf{x}}_t^i = f_{ReLU}(\mathbf{W}_f \cdot (\mathbf{x}_t^i)^T + \mathbf{b}_f).$ • $\mathbf{W}_f = \text{Weights of the feedforward layer}$
- The intermediate term $\hat{\mathbf{x}}^{i}$ is then fed to subsequent LSTM layers.
- The output of the LSTM layers (\mathbf{z}_t) is fed to MDN to estimate the parameters of Gaussians.

- Th fut
- $\rho_{t'}$ $\mu_{t'}$
- $\sigma_{t'}$
- Th \mathbf{y}_{t} -
- T sho
- \mathcal{L}_R Th
- per

Sparse ED-MDN

Narendhar Gugulothu, Easwar Subramanian and Sanjay P. Bhat

TCS Research, Hyderabad, India

0.3

0.3 -

0.6

0.5

0.4

0.3 -

0.5

0.6

0.2

The parameters of
$$K$$
 Gaussian mixtures for a
cure time stamp t' are estimated as follows:
 $\mathbf{y}_{i}(\mathbf{z}_{t}) = \operatorname{softmax}(\mathbf{W}_{\rho} \cdot \mathbf{z}_{t} + \mathbf{b}_{\rho})$
 $\mathbf{y}_{i}(\mathbf{z}_{t}) = \mathbf{W}_{\mu} \cdot \mathbf{z}_{t} + \mathbf{b}_{\mu}$
 $\mathbf{y}_{i}(\mathbf{z}_{t}) = \mathbf{W}_{\mu} \cdot \mathbf{z}_{t} + \mathbf{b}_{\mu}$
 $\mathbf{y}_{i}(\mathbf{z}_{t}) = \exp(\mathbf{W}_{\sigma} \cdot \mathbf{z}_{t} + \mathbf{b}_{\sigma})$
The conditional distribution of predicting
 $\mathbf{z}_{1}, \mathbf{z}_{t} = \exp(\mathbf{W}_{\sigma} \cdot \mathbf{z}_{t} + \mathbf{b}_{\sigma})$
The conditional distribution of predicting
 $\mathbf{z}_{1}, \mathbf{z}_{t} = \exp(\mathbf{W}_{\sigma} \cdot \mathbf{z}_{t} + \mathbf{b}_{\sigma})$
The conditional distribution of predicting
 $\mathbf{z}_{1}, \mathbf{z}_{t} = \exp(\mathbf{z}_{t})$ as follows:
 $P(\mathbf{y}_{t+1,...,t+p} | \mathbf{x}_{1,...,t}; \mathbf{z}_{t}) =$
The model parameters are learned by minimizing
the model parameters are learned by minimizing
the negative log-likelihood of the distribution as
sown below:
 $m_{MDN} = -\frac{1}{N} \sum_{i=1}^{N} \log P(\mathbf{y}_{t+1,...,t+p}^{i} | \mathbf{x}_{1,...,t}^{i}; \mathbf{z}_{t}^{i})$
 $N = \text{Samples in train set}$
The final loss function along with the Lasso
nalty on \mathbf{W}_{f} is thus given by
 $= \mathcal{L}_{RMDN} + \frac{\lambda}{d \times r} ||\mathbf{W}_{f}||_{1}$
 $r = \text{Units in the feedforward layer and $r \leq \frac{d}{2}$
 $\lambda = \text{Regularization parameter, which controls sparsity level}$$

Sparse ED-MDN is a variant of sparse LSTM-MDN, where LSTM network is replaced by ED network.

Results

Table: Performance comparison of proposed sparse RMDN based forecasting models on five datasets.

	AEMO		HomeA		MedicalCenter-1		CentervilleHomes		BrooksideHomes	
	MSE	MAPE	MSE	MAPE	MSE	MAPE	MSE	MAPE	MSE	MAPE
rd LSTM	0.00159	9.03186	0.01182	46.98303	0.00559	17.71834	0.00159	12.6512	0.00276	30.47902
dard ED	0.00237	11.03585	0.01172	44.10512	0.00586	17.5974	0.00165	13.35113	0.00275	29.24932
e LSTM	0.00137	8.66642	0.01113	42.77446	0.00596	18.5316	0.00162	12.1824	0.00256	28.94780
rse ED	0.00170	9.25787	0.01177	43.95304	0.00619	18.5024	0.00154	13.02479	0.00273	31.45647
M-MDN	0.00227	10.36923	0.01295	28.36924	0.00559	17.22558	0.00157	12.06838	0.0028	28.93074
-MDN	0.00199	9.37978	0.01381	35.16026	0.00587	17.26241	0.00155	12.17745	0.00277	28.51284
STM-MDN	0.00167	9.14346	0.01188	25.64572	0.00553	18.54566	0.00150	11.96106	0.00281	26.81967
ED-MDN	0.00176	9.19194	0.01170	29.37821	0.00536	18.84936	0.00153	12.42076	0.00299	27.03677
emble	0.00134	8.07125	0.01015	34.10546	0.00510	17.11900	0.00139	11.74229	0.00242	27.27441

Figure: Comparison of proposed sparse RMDNs and standard RNN based models with the ground truth for forecasting^a. **Observations**

- Sparse LSTM and sparse ED outperformed their non-sparse counter parts.
- MDN variants of LSTM and ED are better than standard LSTM and ED.
- Sparse RMDN based forecasting models outperformed all other approaches.

^aRefer paper for plots on AEMO and BrooksideHomes datasets.

Conclusion

- architectures.
- using MDN.

References

- [1] Robert Tibshirani.
- Gautam Shroff. high-dimensional time series. In Al4IOT workshop, IJCAI, 07 2018.
- [3] S. Hochreiter and J. Schmidhuber. Long short-term memory.
- In *NIPS*, pages 3104–3112, 2014.
- [5] Christopher M Bishop. Mixture Density Networks. Technical report, Citeseer, 1994.

Contact Information

Email: narendhar.g@tcs.com WhatsApp: +91-9705902716

 Sparse RMDNs are superior in capturing the variability and handling high-dimensional data than their non-sparse, non-MDN counterparts. • Estimated confidence σ is low whenever the prediction error is low and it is high otherwise.

Proposed sparse RMDN models outperforms existing RNN based models on forecasting. The sparse RMDN models perform point-wise dimensionality reduction and unsupervised feature selection of high-dimensional data. Captures temporal patterns using underlying RNN

Handles high variability and trend shifts better

Provides a confidence estimate of the forecast.

Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (*Methodological*), pages 267–288, 1996.

[2] Narendhar Gugulothu, Pankaj Malhotra, Lovekesh Vig, and

Sparse neural networks for anomaly detection in

Neural computation, 9(8):1735–1780, 1997.

[4] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.