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Introduction
•Proposed two variants of sparse Recurrent
Mixture Density Networks (sparse RMDN) for
forecasting, namely, sparse LSTM-MDN and
sparse ED-MDN.

•Contains a feedforward layer which produces a
sparse and low-dimensional representation of the
high-dimensional input data.
• The sparsity is achieved by imposing LASSO [1] penalty
on the weights of the feedforward layer.

• Each unit in the feedforward layer has access to only a
subset of the input features [2], which results in
unsupervised feature selection.

•The output of the feedforward layer is fed to the
subsequent RNN (LSTM [3] or ED [4]) to capture
temporal patterns.

•The output of the RNN is passed through Mixture
Density Network (MDN) [5] to handle the
variability in the data and to estimate the
confidence of the forecast.

Sparse LSTM-MDN
• x = (x1, · · · , xt) denotes an input sequence of
length t. Each xk ∈ Rd, k ∈ {1, · · · , t}; d=input
dimension.

•The model is required to provide a prediction
y′t+1,...,t+p of yt+1,...,t+p given the input x1,...,t.

  

Input 

Dim. Reduction Layer

LSTM Layer

LSTM Layer

Sparse Connections

. . . . . . . . .
 ρ

t+1,1
 ρ

t+1,K  μ
t+1,1

μ
t+1,K σ

t+1,1 
σ

t+1,K

M
D

N

Figure: Proposed sparse LSTM-MDN for 1-step ahead
forecasting with two LSTM layers and K Gaussians.

•The output of the feedforward layer for input xit is
given by x̂it = fReLU(Wf · (xit)T + bf).

• Wf = Weights of the feedforward layer

•The intermediate term x̂i is then fed to
subsequent LSTM layers.

•The output of the LSTM layers (zt) is fed to
MDN to estimate the parameters of Gaussians.

•The parameters of K Gaussian mixtures for a
future time stamp t′ are estimated as follows:
ρt′,·(zt) = softmax(Wρ · zt + bρ)
µt′,·(zt) = Wµ · zt + bµ
σt′,·(zt) = exp(Wσ · zt + bσ)

•The conditional distribution of predicting
yt+1,...,t+p given zt expressed as follows:

P (yt+1,...,t+p|x1,...,t; zt) =
t+p∏

t′=t+1

K∑
k=1

ρt′,k(zt)N
yt′;µt′,k(zt), σt′,k(zt)



•The model parameters are learned by minimizing
the negative log-likelihood of the distribution as
shown below:
LRMDN = − 1

N
N∑
i=1

logP
yit+1,...,t+p|xi1,...,t; zit


•N= Samples in train set

•The final loss function along with the Lasso
penalty on Wf is thus given by
L = LRMDN + λ

d× r
||Wf ||1

• r = Units in the feedforward layer and r ≤ d
2

• λ = Regularization parameter, which controls sparsity level

Sparse ED-MDN
•Sparse ED-MDN is a variant of sparse
LSTM-MDN, where LSTM network is replaced by
ED network.
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Figure: Proposed sparse ED-MDN.

Results
Table: Performance comparison of proposed sparse RMDN
based forecasting models on five datasets.

AEMO HomeA MedicalCenter-1 CentervilleHomes BrooksideHomes
MSE MAPE MSE MAPE MSE MAPE MSE MAPE MSE MAPE

Standard LSTM 0.00159 9.03186 0.01182 46.98303 0.00559 17.71834 0.00159 12.6512 0.00276 30.47902
Standard ED 0.00237 11.03585 0.01172 44.10512 0.00586 17.5974 0.00165 13.35113 0.00275 29.24932
Sparse LSTM 0.00137 8.66642 0.01113 42.77446 0.00596 18.5316 0.00162 12.1824 0.00256 28.94780
Sparse ED 0.00170 9.25787 0.01177 43.95304 0.00619 18.5024 0.00154 13.02479 0.00273 31.45647
LSTM-MDN 0.00227 10.36923 0.01295 28.36924 0.00559 17.22558 0.00157 12.06838 0.0028 28.93074
ED-MDN 0.00199 9.37978 0.01381 35.16026 0.00587 17.26241 0.00155 12.17745 0.00277 28.51284

Sparse LSTM-MDN 0.00167 9.14346 0.01188 25.64572 0.00553 18.54566 0.00150 11.96106 0.00281 26.81967
Sparse ED-MDN 0.00176 9.19194 0.01170 29.37821 0.00536 18.84936 0.00153 12.42076 0.00299 27.03677

Ensemble 0.00134 8.07125 0.01015 34.10546 0.00510 17.11900 0.00139 11.74229 0.00242 27.27441
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Figure: MedicalCenter-1
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Figure: CentervilleHomes

Figure: Comparison of proposed sparse RMDNs and standard
RNN based models with the ground truth for forecastinga.
Observations
•Sparse LSTM and sparse ED outperformed their
non-sparse counter parts.

•MDN variants of LSTM and ED are better than
standard LSTM and ED.

•Sparse RMDN based forecasting models
outperformed all other approaches.

aRefer paper for plots on AEMO and BrooksideHomes datasets.

•Sparse RMDNs are superior in capturing the
variability and handling high-dimensional data
than their non-sparse, non-MDN counterparts.

•Estimated confidence σ is low whenever the
prediction error is low and it is high otherwise.

Conclusion
•Proposed sparse RMDN models outperforms
existing RNN based models on forecasting.

•The sparse RMDN models perform point-wise
dimensionality reduction and unsupervised feature
selection of high-dimensional data.

•Captures temporal patterns using underlying RNN
architectures.

•Handles high variability and trend shifts better
using MDN.

•Provides a confidence estimate of the forecast.

References
[1] Robert Tibshirani.

Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society. Series B
(Methodological), pages 267–288, 1996.

[2] Narendhar Gugulothu, Pankaj Malhotra, Lovekesh Vig, and
Gautam Shroff.
Sparse neural networks for anomaly detection in
high-dimensional time series.
In AI4IOT workshop, IJCAI, 07 2018.

[3] S. Hochreiter and J. Schmidhuber.
Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[4] Ilya Sutskever, Oriol Vinyals, and Quoc V Le.
Sequence to sequence learning with neural networks.
In NIPS, pages 3104–3112, 2014.

[5] Christopher M Bishop.
Mixture Density Networks.
Technical report, Citeseer, 1994.

Contact Information

Email: narendhar.g@tcs.com
WhatsApp: +91-9705902716


