

Named Entity Recognition for Chinese Social Media with Domain Adversarial Training and Language Modeling Yong Xu¹, Qi Lu² and Muhua Zhu³*

¹School of Computer science, Fudan University, Shanghai, China. ²Meituan, Beijing, China. ³Alibaba Group, Hangzhou, Zhejiang, China

Introduction

Motivations

- 1) Domains like social media lack large-scale labeled datasets, which renders NER for social media a challenging task. The text in social media is ungrammatical and contains nonstandard orthography and noises.
- 2) Domain adaptation approaches can learn from multiple datasets of diverse.
- 3) Language models can learn general representations from unlabeled indomain data.

Contributions

- We propose a novel neural model for domain adaptation of NER whose building blocks are domain adversarial training and language modeling. Experiments on Chinese social media data show the effectiveness of the model.
- 2) To experiment with a bigger Chinese NER corpus in social media, we expand a previously released dataset and render the new corpus publicly available for research in this direction.

Example

[陈雄/PER]围脖:请解释[北京/LOC]电工[老李/PER] 微博二传手瘦驼tuodi1968

Evaluation

Dataset

- MSR: the labeled out-of-domain corpus, proposed by the sixth SIGHAN Workshop on Chinese language processing. Three NER types: PER, LOC and ORG.
- Weibo: the labeled in-domain corpus,
 released by Peng and Dredze (2015). Four
 NER types: PER, LOC, ORG and GPE.
 GPE type is changed to ORG to make
 sure that entity types of both domain are
 the same.

Data Partitions	$\#Sent^*$	#Char	#Entity
MSR Train	46,364	2,169,879	74,703
MSR Test	4,365	$172,\!601$	6,181
Weibo Train	2,000	119,714	8,092
Weibo Dev	890	52,719	698
Weibo Test	1,000	50,336	744
Weibo Unlabeled	1,000,	000 Weibe	o posts

Table 1: Statistics of the out-of-domain and in-domain data.*We regard each Weibo post as a sentence.

Baseline Models

a BiLSTM-CRF model trained on labeled out-of-domain training data (MSR training data)
a BiLSTM-CRF model trained on labeled in-domain training data (Weibo training data)

Chenxiong Weibo: please explain Beijing electrician laoli Weibo passer Thin Camel toudi1968

Figure 1:An example of Weibo posts annotated with named entities (highlighted in blue).

Approach

Overview

- 1) The Char embedding is used to represent words in corpus.
- 2) BiLSTM on the left is used as common representations between domains and the one on the right is used to learn private representations.
- 3) A CRF network on the basis of the two BiLSTM representations is used for the purpose of recognizing named entities.
- 4) Bidirectional language models are effective as an auxiliary objective for sequence labeling.
- 5) Domain-adversarial training is used to encourage the common BiLSTM to be domain-agnostic.
- 6) Loss of three components are combined together as the overall loss.

$$Loss = L_{CRF} + \lambda_1 L_{DA} + \lambda_2 L_{LM}$$

Domain-Adversarial Training

- 1) The first layer is a convolutional neural network and BiLSTM outputs.
- 2) The vectors from the previous layer are concatenated and forwarded to the domain discriminator through the gradient reversal layer.

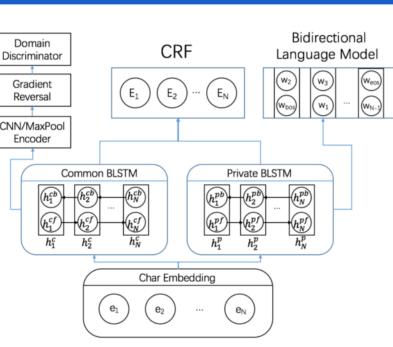


Figure 2: Architecture of our neural network model for NER domain adaptation.

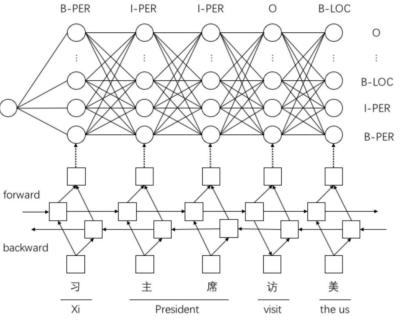


Figure 3: Illustration of bidirectional LSTM-CRF.

BiLSTM-CRF-a BiLSTM-CRF model trained on the combination of labeledMergeout-of-domain and in-domain training data

Results

 *+DA denotes the model which consists of BiLSTM-CRF and domain adversarial training.
 *+DA+LM refers to the model with domain adversarial training and

language models being combined with BiLSTM-CRF.

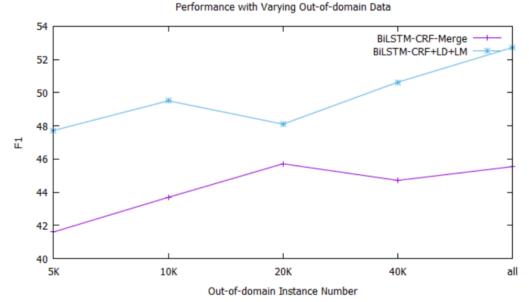


Figure 4: Varying sizes of labeled out-ofdomain training data

Error analysis

System	CO	BC	CR	NC	CA	All
Base	73	58	14	162	36	343
$+\mathrm{DA}$	62	51	11	136	37	297
+DA+LM	70	36	7	129	31	273

Table 3: Effect of our models changing the numbers of errors of each error type: CONTAIN(CO), BE-CONTAIN(BC), CROSS(CR), NO-CROSS(NC), CATEGORY(CA)

000	~	-	
000			

$\mathbf{Systems}^\dagger$	Precision	Recall	$\mathbf{F1}$
*-OOD	30.3	34.1	32.1
*-ID	46.5	37.6	41.6
*-Merge	47.4	42.3	44.7
*+DA	50.0	41.4	45.3
*+DA+LM	55.9	46.2	50.6

Table 2: Results of the baseline systems and our models on the in-domain test set. Here the symbol * refers to Bi-LSTM CRF.

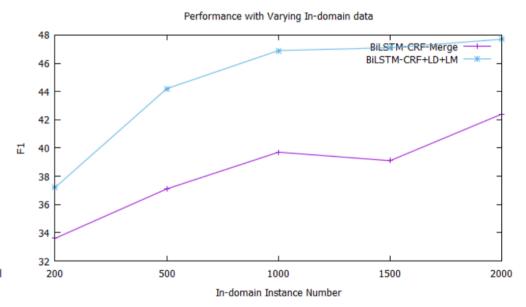


Figure 5: Varying sizes of labeled in-domain training data

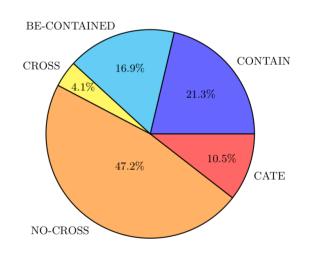


Figure 6: Error types and theirs distribution by BiLSTM-CRF-Merge on the Weibo test.

- 3) The discriminator is implemented as a single fully-connected neural network.
- 4) The loss function of the domain classifier is formulated as $L_{DA} = -\sum_{i=1}^{S} d_i log(\hat{d}_i)$

Training strategy

- 1) For BiLSTM-CRF, labeled in-domain and out-of-domain data are used together to optimize its objective. We assign labeled in-domain data to the positive class and labeled out-of-domain data to the negative class.
- 2) Language models are trained on unlabeled in-domain data.
- 3) To keep gradient from language model consistent with the other two components. We first train language models with a relatively big learning rate. Then we learn the three objectives with a smaller learning rate.

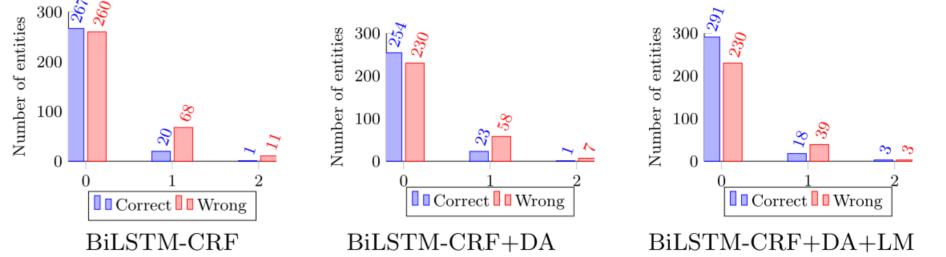


Figure 7: Correct and wrong prediction numbers in different entity lengths of different model. The x coordinates 0, 1, 2 refer to the length ranges of [1,4], [5,8], and [9,12], respectively.

Conclusion

- 1) We proposed a novel neural network model for domain adaptation of named entity recognition in Chinese social media.
- 2) The proposed model can learn from labeled out-of-domain data, labeled in-domain data, and unlabeled in-domain data.
- 3) Results showed that the proposed approach could improve over the baselines significantly.

Alibaba Group

