
Deep Recurrent Policy Networks for Planning under Partial Observability
Zixuan Chen1*, Zongzhang Zhang2

1 School of Computer Science and Technology, Soochow University, Suzhou, China
2 National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

Contact Author:* cczxqueen@gmail.com

242

28th International Conference on Artificial Neural Networks

Abstract
QMDP-net is a recurrent network architecture that

combines the features of model-free learning and model-

based planning for planning under partial observability. The

architecture represents a policy by connecting a partially

observable Markov decision process (POMDP) model with

the QMDP algorithm that uses value iteration to handle the

POMDP model. However, as the value iteration used in

QMDP iterates through the entire state space, it may suffer

from the ''curse of dimensionality''. Besides, as the policies

based on the QMDP will not take actions to gain

information, this may lead to bad policies in domains where

information gathering is necessary. To address these two

issues, this paper introduces two deep recurrent policy

networks, asynchronous QMDP-net and ReplicatedQ-net,

based on the plain QMDP-net. The former takes advantage

of the idea of asynchronous update into the value iteration

process of QMDP to learn a smaller abstract state space

representation for planning. The latter partially replaces the

QMDP with the replicated Q-learning algorithm to take

informative actions.

Method

Asynchronous QMDP-net is a recurrent policy network

that applies the idea of asynchronous update into the QMDP

planner to improve the plain QMDP-net for planning better

under uncertainty. Asynchronous QMDP-net effectively

reduces the possibility of meaningless sweeping that

happens in the value iteration process of QMDP and

alleviates the ''curse of dimensionality''. Since QMDP makes

use of the underlying fully observable MDP to perform the

computation of the final Q-values of POMDP, in

asynchronous QMDP-net, we choose to use the Bellman

error to favour the sampling of certain states in every round

of update process so as to learn a much smaller abstract state

set for more efficient planning. The Bellman error is the

absolute value of the difference between the state value

obtained before and after one round of value iteration.

According to the defined state importance, states to be

updated in each round of asynchronous update are sampled

with a threshold, that is, states whose Bellman errors are

greater than the threshold will be sampled, whereas others

will not be sampled and their values remain unchanged.

Based on this threshold, the network can effectively

distinguish between the less important states and the more

important states and successfully sample states with

relatively higher priorities during each iteration, this allows

the asynchronous updates to be performed more reasonably.

Same as QMDP-net and asynchronous QMDP-net, ReplicatedQ-

net is also a recurrent policy network that is obtained by partially

replacing the QMDP algorithm used in QMDP-net with the value

update rule of replicated Q-learning. It is worth noting that, in

order to prevent the algorithmic sophistication from increasing the

difficulty of learning, instead of directly using the replicated Q-

learning to solve POMDPs, in ReplicatedQ-net, we masterly

combine the value update rule used in replicated Q-learning with

the value iteration algorithm to achieve better planning

performance while reducing the difficulty of learning.

Figure 1. The Asynchronous QMDP planner module in asynchronous QMDP-net.

Figure 2. The ReplicatedQ planner module of ReplicatedQ-net

Experiments

The specific experimental environment is set up as a robot

learning to navigate in partially observable grid worlds. The

robot possess a map corresponding to the current grid world

environment, and it has a belief over the initial state, but does

not know where the exact initial state is. For the robot, only the

local information around it will be observed, however, these

local observations are ambiguous, which are insufficient for the

robot to determine where it is the exact state.

Figure 3. Comparison of training performance of the recurrent policy networks.

Table 1. Comparison of testing performance of the recurrent policy networks.The

policy networks used for testing are trained under Grid-8x8.

Table 2. Comparison of testing performance of the recurrent policy networks.The

policy networks used for testing are trained under Grid-16x16.

mailto:cczxqueen@gmail.com

