

Improved Forward-backward Propagation to Generate Adversarial Examples

TSING TO THE TOTAL TO THE TOTAL

Yuying Hao¹, Tuanhui Li², Yang Bai¹, Li Li², Yong Jiang², and Xuanye Cheng³

¹Tsinghua-Berkely Shenzhen Institute, Tsinghua University, Shenzhen, China

²Graduate School at Shenzhen, Tsinghua University, Shenzhen, China

³SenseTime Research, SenseTime, Shenzhen, China

Contact Author: (haoyy17@mails.tsinghua.edu.cn)

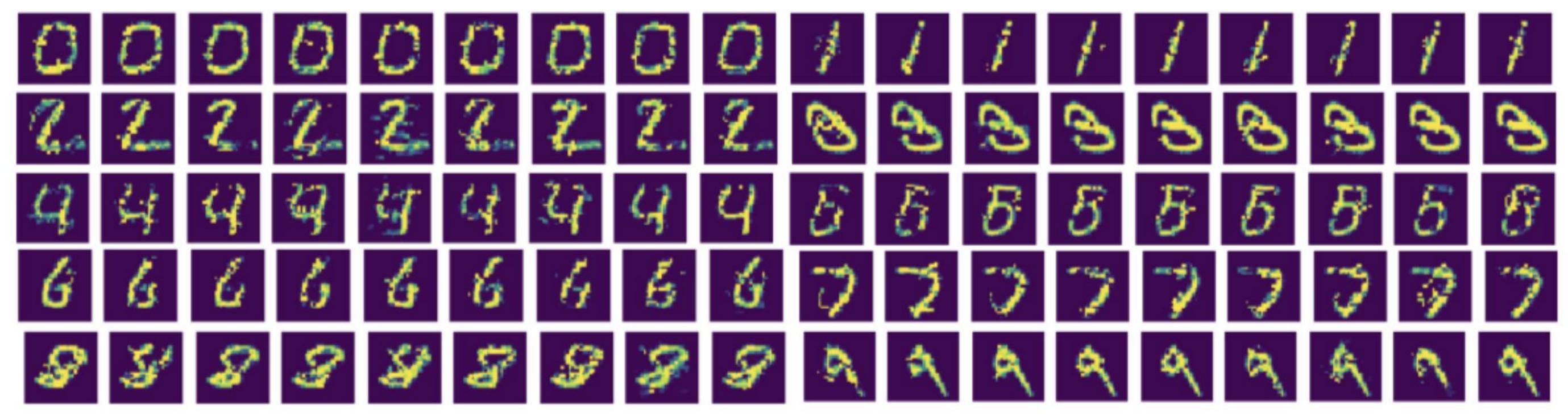


Fig.1 Our method applied on MNIST performs targeted attacks. The generated images in each row have all labels in order except its original label. (For example, in the first row for 0, adversarial images are listed with targeted label 1-2-3-4-5-6-7-8-9.)

Contributions

(1)We combine forward and backward propagation to add sparse perturbations and introduce an excellent approach to select sensitive pixels for misclassification.

(2)We introduce a novel loss function, which can smooth and reduce the perturbations and achieve the goals of targeted attack. More specifically, the l_0 norm can be converted into a derivable function.

The proposed method

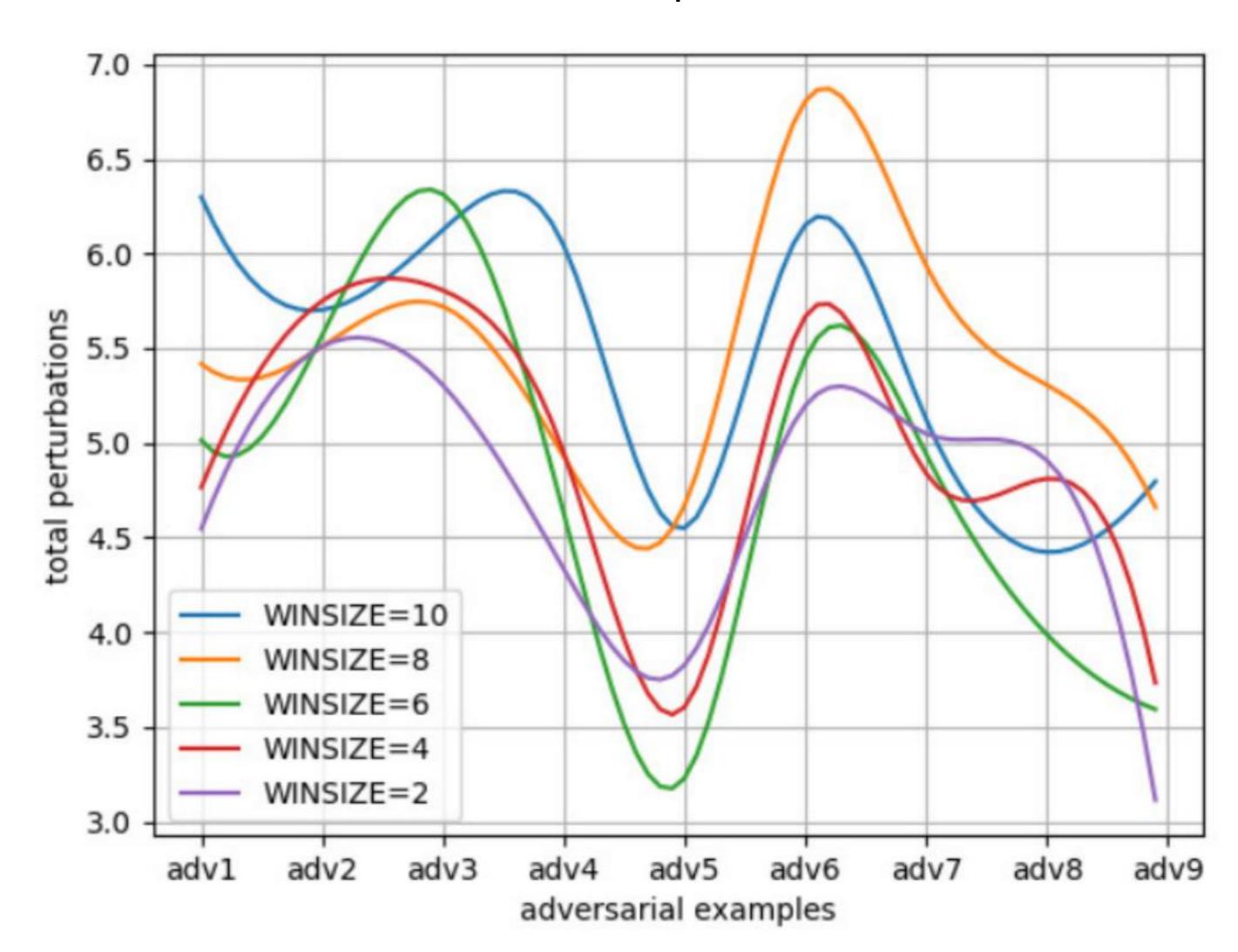
1. Forward Derivative Local Attack

$$abla \mathbf{Z}_t(\mathbf{X}') = rac{\partial \mathbf{Z}_t(\mathbf{X}')}{\partial \mathbf{X}'}$$

$$\mathbf{Pert}[p, q, n] = d_i / (\sum_{i=1}^{n} |d_i|)$$

where $\mathbf{Z}_t(\mathbf{X}')$ is the output of logit layer with \mathbf{X}' and [p,q,n] to represent the location of selected pixel.

2. Modeling for Loss Function


min
$$c_1 \| \mathbf{X} - \mathbf{X}' \|_2^2$$

 $+c_2 \sum_{x \in \mathbf{X}} clip\{255 * (|x - x'| - 0.0039), 0, 1\}$
 $+c_3 \max\{0, \mathbf{Z}_{max} - \mathbf{Z}_t\}$
 $+c_4 \max\{0, \mathbf{Z}_0 - \mathbf{Z}_t\}$
s.t. $\mathbf{X}' \in [0, 1]^n$.

3. Algorithm

Algorithm 1 The propose algorithm for adversarial attack **Input:** benign image **X**; ground-truth y_0 ; target label y_t ; local attack pixel number k; maximum iterations maxiter; Output: X' while iter < maxiter do Compute $\nabla \mathbf{Z}_t(\mathbf{X}')$ according to (5) Select the top-k magnitudes in $\nabla \mathbf{Z}_t(\mathbf{X}')$ and record the correspond position [p,q,n]. Calculate $\mathbf{Pert}[p,q,n]$ according to (6) if $m \leq \mathbf{Round}(k/2)$ then $\mathbf{Pert}[p, q, n] = \mathrm{Floor}(\mathbf{Pert}[p, q, n])$ else $\mathbf{Pert}[p, q, n] = \mathrm{Ceil} (\mathbf{Pert}[p, q, n])$ end if Compute $\mathbf{Mod} = \nabla F_{loss}(\mathbf{X}')$ according to (10) $\mathbf{X}' = \mathbf{X}' - r_1 * \mathbf{Mod} + r_2 * \mathbf{Pert}$ if $arg max (\mathbf{Z}(\mathbf{X}')) = y_t$ then Return X' end if end while

Experiments

> The effect of WINSIZE on total perturbations on MNIST.

White-box attack on MNIST, T and K are different CNN structures.

Model	Method			
	FGSM	Deepfool	$C\&W-\ell_2$	Ours
K	43.55	15.58	0.75	0
\mathbf{T}	1.32	1.885	1.5	0

> Transferability of different methods on MNIST dataset.

method	type	$\mathrm{acc}(\%)$
FGSM	Adversarial training	30.93
I GOM	Black-box attack	32.73
Virtual	Adversarial training	33.53
viituai	Black-box attack	36.04
$C\&W-\ell_2$	Adversarial training	34.83
$C \propto VV - \epsilon_2$	Black-box attack	40.24
Doonfool	Adversarial training	6.61
Deepfool	Black-box attack	11.41
Ours	Adversarial training	6.06
Ours	Black-box attack	6.17

Contact us by Wechat

