

28th International Conference on Artificial Neural Networks

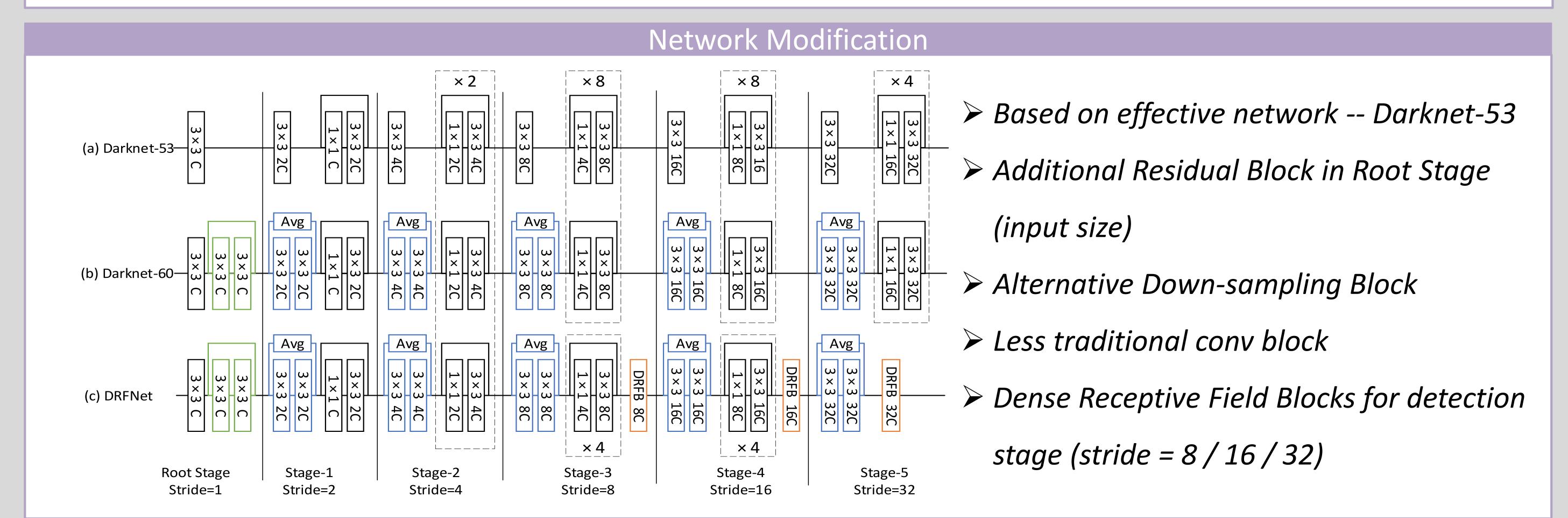
Dense Receptive Field Network:

A Backbone Network for Object Detection

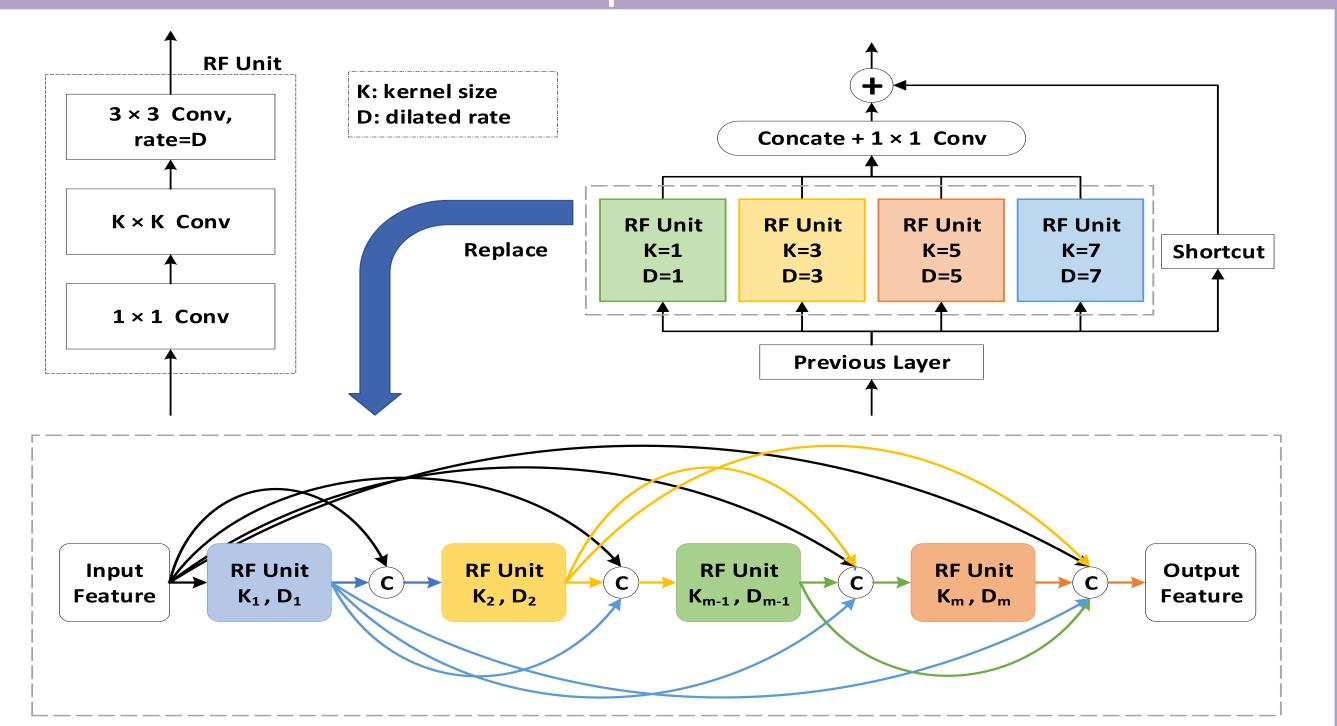
Fei Gao, Chengguang Yang, Yisu Ge, Shufang Lu and Qike Shao College of Computer Science and Technology, Zhejiang University of Technology, HangZhou, China Contact Author: Fei Gao, feig@zjut.edu.cn

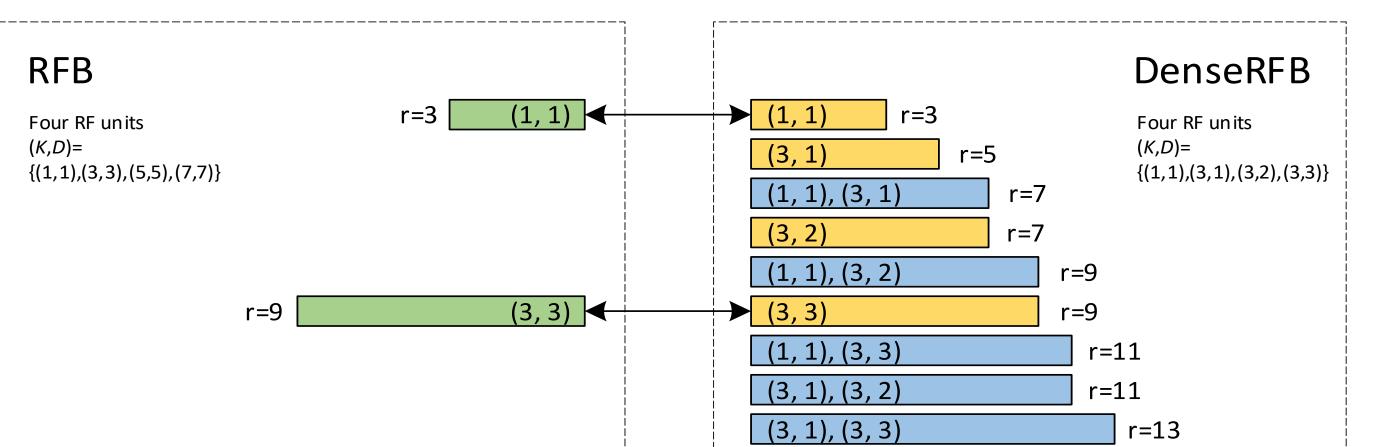
Introduction

- > Current backbone networks of object detection are mainly classification networks, which prevents the further improvement of the detector performance.
- Since the objects are distributed in different sizes and ratios, it is important for backbone networks to form dense receptive field for extracting discriminative features.
- > Motivated by Receptive Filed Block (RFB) and Dense ASPP, we propose a more effective architecture named Dense Receptive Field Block (Dense RFB).
- > With some modifications and proposed architecture, we present Dense Receptive Field Network (DRFNet) based on Darknet-53.
- > DRFNet is a backbone network suitable for multi-scale detectors like ScratchDet and SSD.



Dense Receptive Field Block





- The RF unit is the basic component to generate effective receptive field.
- The rearrangement of RF units from parallel to dense connection helps Dense Receptive Field Block to form denser ERF for better performance.

Results

Trained From Scratch on Pascal VOC

One-stage Method	Backbone	Input size	mAP(%)	FPS
SSD300 [1]	VGG-16	300×300	77.2	120
DSSD321 [16]	ResNet-101	321×321	78.6	10
STDN321 [17]	DenseNet-169	321×321	79.3	40
DES300 [25]	VGG-16	300×300	79.7	30
RefineDet 320 [26]	VGG-16	320×320	80.0	40
RFBNet 300 [10]	VGG-16	300×300	80.5	83
ScratchDet 300 [7]	DRFNet	300×300	81.0	61

0

r=21

One-stage Method	Backbone	AP	AP_{50}	AP_{75}	AP_s	AP_m	AP_l	FPS
DSSD321 [16]	ResNet-101	28.0	46.1	29.2	7.4	28.1	47.6	9.5
STDN300 [17]	DenseNet-169	28.0	45.6	29.4	7.9	29.7	45.1	38
RefineDet 320 [26]	VGG-16	29.4	49.2	31.3	10.0	32.0	44.4	36
RFBNet 300 [10]	VGG-16	30.3	49.3	31.8	11.8	31.9	45.9	66
RetinaNet 400 [3]	ResNet-50-FPN	30.5	47.8	32.7	11.2	33.8	46.1	16
RetinaNet 400 [3]	ResNet-101-FPN	31.9	49.5	34.1	11.6	35.8	48.5	12
SratchDet300 [7]	Root-ResNet-34	32.7	52.0	34.9	13.0	35.6	49.0	25
SratchDet 300 [7]	DRFNet	32.2	50.4	34.4	13.2	37.2	48.2	54

(1, 1), (3, 1), (3, 2) r=13 (3, 2), (3, 3) r=15 (1, 1), (3, 2), (3, 3) r=15 (1, 1), (3, 2), (3, 3) r=17 (3, 1), (3, 2), (3, 3) r=19

- The comparison between RFB and DenseRFB.
- With smaller kernel size and dilated rate, DenseRFB forms a dense receptive field pyramid, it helps to capture more discriminative features.

(7,7)

Conclusion

- We present an effective and efficient backbone network called DRFNet for object detection.
- DRFNet is based on Darknet-53 with some modifications and a new architecture.

→ (1, 1), (3, 1), (3, 2), (3, 3)

- The new architecture called Dense Receptive
 Field Block (Dense RFB) can form much denser
 RF as well as ERF for better performance.
- Our DRFNet can achieve competitive results on the simple detection Framework – SSD.

Reference

Trained on ImageNet then trained on MS COCO

				One-stage Method	Backbone	AP	AP_{50}	AP_{75}	AP_s	AP_m	AP_l	FPS
Model	Top-1	Top-5	FPS	LJ			51.0					
ResNet-101 [18]	77.4	93.7	112	RefineDet512 [26] YOLOv3 [5]			54.5 57.9					22 20
ResNet-152 $\begin{bmatrix} 18 \end{bmatrix}$			70				53.3					
DRFNet	78.5	94.1	143	L]			54.2					
	I	1			ResNet-101-FPN							
				SSD512 [1]	DRFNet	34.7	53.2	37.2	18.7	43.2	50.2	29

[1] Liu, S., Huang, D., et al. Receptive field block net for accurate and fast object detection. ECCV,2018.
[2] M. Yang, K. Yu, C. Zhang, Z. Li, and K. Yang. Denseaspp for semantic segmentation in street scenes. CVPR,2018.
[3] Zhu, R., Zhang, S., Wang, X., Wen, L., Shi, H., Bo, L., Mei, T. Scratchdet: Exploring to train single-shot object detectors from scratch. CVPR,2019.
[4] Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

Other contact Information: Fei Gao, gfei_jack@163.com, WeChat: Kevin-FG Chengguang Yang, chg_yang@qq.com, WeChat: Light_ChgY

ManuscriptID: 225

r=21