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Level Fusion Layer
To fuse features from each level, we make some operations on G:

G' = max(split(F(G)))
where F(-) is a standard projection layer with ReLU activation function, split(-)
IS a function that splits the input vector at the last axis, max(-) is to reduce
dimensions of vectors by choosing the max numerical in each axis.
Now we use G’ toreplace G. Based on G’ , we use an attention mechanism to
get a wide representation C:

Natural language inference (NLI) is a challenging natural language processing
(NLP) task which requires one to determine whether the logical relationship
between two sentences is among entailment (the hypothesis must be true if the
premise is true), contradiction (the hypothesis must be false if the premise is
true) and neutral (neither entailment nor contradiction). Generally, NLI is also
related to many other NLP tasks under the paradigm of semantic matching of
two sentences. An essential challenge is to capture the semantic relevance of
the two sentences.

In this paper, we propose a new interaction model, named Dependent Multilevel
Interaction (DMI) network, which models multiple interactions between a
premise and a hypothesis to capture more comprehensive information.

A = softmax(ReLU(G'W,)W,)
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Where W,, W, are trainable parameters.
Finally, we employ a BIGRU to encode C and then use an avg-max pooling to

Prediction Layer

5 obtain a fixed vector of level-comparison:
Aggregat{‘)" e C' = [avgPooling(BiGRU(C)); maxPooling (BiGRU(C))]
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Fig. 2. The Structure of Single-interaction Unit (SIU)
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(a) Premise: department of education gas does
not have a definite shape and it does not have a
definite volume. Hypothesis: gas has no definite
volume and no definite shape. Label: entailment

(b) Premise: divide the class into four teams of
six or seven students. Hypothesis: mollusks can
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Comparison Module
G=[H;H;H-H;HOH|, S=
Totally, we achieve three features from a SIU structure:
P,G,S = SIU(P,H)

In this work, we propose a dependent multilevel interaction model that provides
multiple interactions by cascading a serial of single-interaction units (SIUs).
Each SIU includes a novel attention mechanism and comparison module to
model the interaction between the premise and the hypothesis. Experiments on
two benchmark datasets demonstrate the efficacy of our model. In the future, we
\ hope to improve the scalability of our model and apply it to other NLI tasks, such
as machine reading comprehension and answer selection.

Levels dependency To reduce information redundancy and enhance the dependency
between the adjacent interactions, we update the input H; of SIU; as follows:
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