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Introduction

In many computer vision tasks, images or image sets can be modeled

as a Gaussian distribution to capture the underlying data distribution. The challenge

of using Gaussians to model the vision data is that the space of Gaussians is

not a linear space. From the perspective of information geometry, the Gaussians

lie on a specific Riemannian Manifold. In this paper, we present a joint metric

learning (JML) model on Riemannian Manifold of Gaussian distributions. The

distance between two Gaussians is defined as the sum of the Mahalanob is distance

between the mean vectors and the log-Euclidean distance (LED) between

the covariance matrices. We formulate the multi-metric learning model by jointly

learning the Mahalanob is distance and the log-Euclidean distance with pairwise

constraints. Sample pair weights are embedded to select the most informative

pairs to learn the discriminative distance metric. Experiments on video based

face recognition, object recognition and material classification show that JML is

superior to the state-of-the-art metric learning algorithms for Gaussians.

promising tracking performance on several publicly available datasets.

Global Gaussian Distributions Modeling 
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Results

To ensure a broad assessment of the different approaches, four common

public datasets are used to conduct comparative experiments. ETH-80

contains 3,280 high-resolution color images. UIUC contains216 images and 18

categories, each category includes 12 images. YouTube Celebrities (YTC)

dataset is a collection of celebrities from YouTube. Flickr material dataset
(FMD) contains 1000 images and 10 categories.

Given an image or image set, a feature matrix 𝑿𝒊
𝒎𝒊×𝒅 can be extracted by using hand-

crafted features or deep features. By computing the mean and covariance matrix of 𝑿𝒊, 
an image or image set can be modelled by a Gaussian distribution 𝑵(𝝁, 𝛴). The 

Mahalanob is distance between the means can be defined as:

Accuracies of different methods on four datasets 

The algorithm of joint metric learning on Riemannian manifold of Gaussian 
distributions is summarized in Algorithm 1. 

Here JML(A) means that we only learn the distance metric using the fist-order sta-

tistics while JML(B) means that the distance metrics are learned for covariance 

matrices. JML(A+B) means that the distance metrics for both the mean and cova-

riance matrices are learned jointly. LEML and SPDML learn distance metric based 

on SPD manifold. MMD and MDA are based on nonlinear manifold assumption 

while AHISD and CHISD are linear subspace based methods. Compare with the 

state-of-the-art metric learning algorithms, our proposed JML achieve superior 

performance.

To build a Gaussian distribution , the first order statistics (mean) 𝝁 and the 

second order statistics (covariance matrix) Σ can be computed as follows：

Fig. 1: Global Gaussian distribution modelling of images and image sets. For an 

image set, handcrafted features and deep features (fully connected layer) can be 

extracted for each image. For an image, we use convolutional neural network to 

extract the output of the final convolution layer as deep features. Thus, a feature 

matrix 𝑿 ∈ 𝑹𝒎𝒊 ×𝒅 can be extracted for both an image or image set. 
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We  get the closed-form solution to 𝜶𝒊𝒋 and 𝜷𝒊𝒋 as follows:

𝒅𝒖 = (𝝁𝒊−𝝁𝒋 )
𝑻𝑨 𝝁𝒊 − 𝝁𝒋 = 𝒕𝒓(𝑨𝑻𝒊𝒋)，

Conclusions 

In this paper, we proposed a joint metric learning (JML) model for global Gaussian 

distributions. The distance between Gaussians are defined as the sum of the sum 

of the Mahalanob is distance of the first-order statistics and the log-Euclidean dis-

tance(LED) of the second order statistics. JML effectively combines the informat-

ion of the means and covariance matrices by joint metric learning and embeds the 

weights of Gaussian pairs into the learning model. 

Last , We  get the final  solution to 𝑨 and 𝑩 as follows:

geodesic distance between 𝛴𝒊 , 𝛴𝒋 on original SPD manifold can be represented as: 

Considering the difference between the first-order and second-order statistics, the

weighted joint distance between two Gaussians is defined as follows:

For metric learning, a large number of sample pairs are generated firstly. However, not 

all sample pairs are necessary for metric learning and the importance of samples also 

varies greatly during the metric learning process. To this end, we embed the weight of 

sample pairs into the metric learning mode as follows:


