Deep Recurrent Neural Networks with Nonlinear Masking Layers

national Conference on Artificial Neural Network

and Two-Level Estimation for Speech Separation

Jiantao Zhang* and Pingjian Zhang

South China University of Technology, 510006 Guangzhou, China

Contact Author: *, 1277472231@qq.com

Introduction

The goal of speech separation is to separate a specific target speech from some background interferences and it has been treated as a signal processing problem traditionally. Recently, deep neural networks (DNNs) have played an increasingly important role in this field. In our study, deep RNNs with nonlinear masking layers and two-level estimation are proposed for speech separation.

Objectives

- To obtain the level 1 estimated sources via the RNN and use them to form the original deterministic time-frequency (T-F) masks.
- To correct and enhance the original masks (SMM, IRM, etc.) via the nonlinear masking layer, i.e., to form the post-processed nonlinear masks.
- To improve the overall quality of speech separation via the post-processed nonlinear masks, i.e., to obtain the level 2 estimated sources.

Two-Level Estimation

• Learning a simple mapping-based model

First of all, we construct a simple mapping-based model via using the recurrent neural network, where "mapping-based" means directly mapping the mixture to the sources. The sources here are called level 1 estimated sources and used for construct original deterministic T-F masks.

Stacking multiple nonlinear masking layers After that, multiple nonlinear masking layers are stacked together and accept the original T-F masks to output the nonlinear post-processed masks. These nonlinear masks are used to obtain the level 2 estimated sources.

- The input features are the spectral magnitudes of the level 1 estimation if l = 1.
- By contrast, the input features are the hidden post-processed masks from the previous nonlinear masking layer if $1 < l \leq L$.
- In general, $L \ge 1$, but in particular, we say L = 0 means that there are no nonlinear masking layers, i.e., only the original masks.

Experiments

OM	#NMLs	$lpha^{[l](1)}$	$\alpha^{[l](2)}$	SDR	SIR	SAR
None	None	None	None	6.18	8.97	8.02
SMM	L = 0	None	None	7.76	11.75	10.51
SMM	L = 1	$\alpha^{1} = 1.0$	$\alpha^{[1](2)} = 1.0$	9.69	15.50	10.03
SMM	L=2	$\alpha^{1} = 1.0$	$\alpha^{[1](2)}_{(2)} = 1.0$	9.94	15.75	9.68
		$\alpha^{[2](1)} = 1.5$	$\alpha^{2} = 1.5$			
SMM	L = 3	$\alpha^{1} = 1.0$	$\alpha^{[1](2)} = 1.0$	10.20	16.33	10.03
		$\alpha^{[2,3](1)} = 1.5$	$\alpha^{[2,3](2)} = 1.5$			
IRM	L = 0	None	None	7.05	13.12	10.13
IRM	L = 1	$\alpha^{1} = 1.0$	$\alpha^{[1](2)} = 1.0$	7.57	14.06	9.84
IRM	L = 2	$\alpha^{1} = 1.0$	$\alpha^{[1](2)} = 1.0$	8.64	15.38	10.19
		$\alpha^{[2](1)} = 1.5$	$\alpha^{2} = 1.5$			
IRM	L = 3	$\alpha^{1} = 1.0$	$\alpha^{[1](2)} = 1.0$	8.69	16.33	10.27
		$\alpha^{[2,3](1)} = 1.5$	$\alpha^{[2,3](2)} = 1.5$			

- The NML accelerates the training procedure of the model especially for SDR and SIR.
- The models with multiple NMLs achieve much better SDRs and SIRs than those with original masks.
- "OM" denotes the type of the original T-F masks.
- Both SDRs and SIRs are improved with the increasement of the number of NMLs no matter what kind of original mask is used, by contrast, SARs maintain relatively stable.
- Increasing the size of the context window (c = 1, 3, 5) may harm the performance of the model due to overfitting possibly.

The effect of using the NML is not necessarily better than The model with SMMs followed by 3 NMLs obtains both that of not using the NML for SAR. best SDR and SIR.

- An utterance example: the spectrograms of the real sources are compared to those of the estimated sources.
- The model "RNN + SMMs + 3 NMLs" generates relatively good results since the spectral representations of the estimated sources are quite closed to those of the real sources.

Other contact Information: JiantaoChaserLLer (WeChat)

002